Световое и звуковое оборудование для дискотеки цветомузыка и ламповые микрофоны

световое оборудование | звуковое оборудование

барахолка распродажа аппаратура недорого объявления

Усилитель мощности низкой частоты без ООС

Наши предложения по усилителям мощности для клубов и дискотек

Усилитель мощности низкой частоты без ООС

В последнее время конструкторы усилителей мощности низкой частоты всё чаще обращаются к ламповой схемотехнике, которая позволяет при сравнительной простоте конструкции достигать хорошего звучания. Но не следует полностью "списывать" транзисторы, поскольку при определенных обстоятельствах транзисторный усилитель мощности все-таки способен работать довольно неплохо, а часто и лучше ламп.
Еще в недалеком прошлом непременным и достаточным условием хорошей работы любого усилителя мощности считалось обязательным введение глубоких ООС. Бытовало мнение о невозможности создания высококачественных усилителей мощности без глубоких общих ООС. К тому же авторы конструкций убедительно уверяли, что, мол, нет необходимости в подборе транзисторов для работы их в парах (плечах), ООС все скомпенсирует и разброс транзисторов по параметрам на качество звуковоспроизведения не влияет!

Эпоха усилителей мощности, собранных на транзисторах одной проводимости, например, популярных КТ808, предполагала включение выходных транзисторов УМЗЧ уже неравноправно, когда один транзистор выходного каскада был включен по схеме с ОЭ, второй же - с ОК. Такое асимметричное включение не способствовало качественному усилению сигнала. С приходом КТ818, КТ819, КТ816. КТ817 и др., казалось бы, проблема линейности усилителей мощности решена. Но перечисленные комплементарные пары транзисторов слишком далеки от истинной комплементарности.

Нет смысла отрицать возможность достижения хороших результатов при создании усилителей мощности на комплементарных транзисторах. Для этого нужен современный подход в схемотехнике таких усилителей мощности, с обязательным тщательным подбором транзисторов для работы в парах (ключах).
Касаясь симметричности усилителей мощности, как главного условия хорошей его работы - следует сказать следующее. Оказалось, что более высокими качественными параметрами обладает усилитель мощности, собранный по действительно симметричной схеме и непременно на транзисторах одинакового типа обязательной подборкой экземпляров). Подбирать же транзисторы намного легче, если они из одной партии. Обычно экземпляры транзисторов из одной партии имеют довольно близкие параметры против "случайно" приобретенных экземпляров. Из опыта можно сказать, что из 20 шт. транзисторов (стандартное количество одной пачки) почти всегда можно отобрать две пары транзисторов для стереокомплекса усилителя мощности.

усилитель мощности без ООС

Схема усилителя мощности без ООС

Как видно из схемы усилителя мощности, она довольно простая. Симметричность обоих плеч усилителя обеспечена симметричностью включений транзисторов. Известно, что дифференциальный каскад обладает многими преимуществами перед обычными двухтактными схемами. Не углубляясь в теорию, следует подчеркнуть, что в данной схеме заложено правильное "токовое" управление биполярными транзисторами. Транзисторы дифференциального каскада обладают повышенным выходным сопротивлением (намного большим традиционной "раскачки" по схеме с ОК), поэтому их можно рассматривать как генераторы тока (источники тока). Таким образом реализуется токовый принцип управления выходными транзисторами усилителя мощности.
Известно, что нелинейность входной характеристики транзистора I б =f(U бэ ) в наибольшей степени проявляется тогда, когда усилительный каскад работает от генератора напряжения, т.е. выходное сопротивление предыдущего каскада меньше входного сопротивления последующего. В этом случае выходной сигнал транзистора - ток коллектора или эмиттера - аппроксимируется экспоненциальной функцией напряжения база эмиттер U бэ, а коэффициент гармоник порядка 1% достигается при величине этого напряжения, равном всего 1 мВ (!). Это объясняет причины возникновения искажений во многих транзисторных УМЗЧ. Очень жаль. что этому факту практически никто не уделяет должного внимания. Что уж там, транзисторы "умирают" в усилителях мощности(как динозавры?!), словно нет никакого выхода из сложившихся обстоятельств, кроме как применения ламповых схем...

Но прежде чем приступить к намотке трудоемкого выходного трансформатора, стоит все-таки повозиться и с симметричной транзисторной схемой усилителя мощности. Забегая вперед, скажу еще о том, что по аналогичной схемотехнике были собраны и усилители мощности на полевых транзисторах, об этом поговорим как-нибудь в другой раз.
Еще одна особенность схемы данного усилителя мощности - это повышенное (по сравнению с традиционными усилителями мощности) количество источников питания. Не следует этого бояться, поскольку емкости фильтрующих конденсаторов попросту разделяются на два канала в равной степени. А разделение источников питания в каналах усилителях мощности лишь улучшают параметры стереокомплекса в целом. Напряжения источников E1 и E2 не стабилизированы, а в качестве EЗ необходимо использовать стабилизатор напряжения (40 вольт).

Говоря о теоретических проблемах двухтактных схем и транзисторных усилителей мощности вообще, необходимо проанализировать еще один каскад (или несколько таковых каскадов) - фазоинвертор. Продолжительные эксперименты подтверждают факт существенного ухудшения качества звуковоспроизведения из-за этих каскадов. Собрав совершенно симметричную схему, да еще и с кропотливо подобранными деталями, приходится столкнуться с проблемой схем фазоинверторов. Было установлено, что эти каскады способны вносить очень большие искажения (различие формы синусоиды для полуволн можно было наблюдать на экране осциллографа даже без использования каких-либо дополнительных схем). Сказанное в полной мере относится и к простым схемам ламповых вариантов усилителей-фазоинверторов. Вы подбираете номиналы в схеме с тем, чтобы получить равенство амплитуд обеих полуволн (синусоиды) противофазного сигнала по высококлассному цифровому вольтметру, а субъективная экспертиза требует (на слух !) поворота движков подстроечных резисторов в сторону от этого "приборного" способа регулировки уровней.
Всматриваясь в форму синусоиды на экране осциллографа, удается увидеть "интересные" искажения - на одном выходе фазоинвертора они шире (по оси частот), на другом - "тоньше", т.е. площадь фигуры синусоид различна для прямого и фазоинверсного сигналов. Слух это четко улавливает, приходится "разрегулировать" настройку. Выравнивать же синусоиду в фазоинверсных каскадах глубокими ООС крайне нежелательно. Устранять нужно причины асимметрии в этих каскадах другими схемотехническими путями, в противном случае фазоинверсный каскад может вносить весьма заметные на слух "транзисторные" искажения, уровень которых будет сопоставим с искажениями выходного каскада усилителя мощности (!). Вот так и случается, что фазоинвертор является основным узлом асимметрии для любых двухтактных усилителей мощности (будь-то транзисторных, ламповых или комбинированных схем усилителей мощности), если, конечно же, усилительные элементы в плечах заранее отобраны с близкими параметрами, иначе нет смысла вообще ожидать от таких схем хорошего звучания.

Из самых простых в реализации фазоинверсных схем, которые хорошо работают, являются ламповые варианты. Более простыми их "аналогами" являются полевые транзисторы, которые (только !) при грамотном схемотехническом подходе вполне способны конкурировать с ламповыми усилителями. И если уж аудиофилы не боятся применения согласующих трансформаторов в выходных каскадах, где это "железо" все равно "звучит", то уж и в предыдущих каскадах можно со спокойной совестью применять трансформаторы. Я имею в виду фазоинверсные каскады, где амплитуда тока (а именно эта составляющая пагубно влияет на "железо") невелика, а амплитуда напряжения достигает значения всего лишь в несколько вольт.
Бесспорно, что любой трансформатор - это своеобразный шаг назад в схемотехническом отношении в век гигагерцовых Pentium'ов. Но есть несколько "но", о которых весьма уместно иногда вспомнить. Первое - грамотно изготовленный переходной или согласующий трансформатор никогда не внесет столько нелинейных искажений, сколько могут внести самых разнообразных искажений несколько "неправильных" усилительных каскадов. Второе - трансформаторный фазоинвертор действительно позволяет достигнуть реальной симметрии противофазных сигналов, сигналы с его обмоток по-настоящему близки друг к другу как по форме, так и по амплитуде. К тому же он - пассивный , и его характеристики не зависят от питающих напряжений. И если ваш усилитель мощности реально симметричен (в данном случае имеются в виду его входные импедансы), то асимметрия усилителя мощности будет уже определяться более разбросом параметров радиокомпонентов в плечах усилителя мощности, чем фазоинверсным каскадом. Поэтому не рекомендуется использовать в таком усилителе мощности радиоэлементы с допусками более 5% (исключения лишь составляют цепи генератора тока, питающего дифференциальный каскад). Следует отдавать себе отчет, что при разбросах параметров транзисторов в плечах усилителя мощности более 20% точность резисторов уже теряет свою актуальность. И наоборот, когда используются хорошо подобранные транзисторы, имеет смысл применять резисторы с допуском 1%. Их конечно же, можно и подобрать с помощью хорошего цифрового омметра.

Вот одна из наиболее удачных схемотехнических разработок фазоинвертора:

фазоинвертор усилителя мощности

Схемотехническая разработка фазоинвертора

Кажущаяся слишком простой, она все же требует пристального внимания к себе, поскольку имеет несколько "секретов". Первый из таких - это правильный выбор транзисторов по параметрам. Транзисторы VT1 и VT2 не должны иметь значительных утечек между электродами (имеется в виду переходы затвор-исток). Кроме того, транзисторы должны иметь близкие параметры, особенно это касается начального тока стока - сюда наиболее подходят экземпляры с I с.нач. 30-70 мА. Напряжения питания должны быть стабилизированы, правда коэффициент стабилизации блока питания существенной роли не играет, к тому же, отрицательное напряжение можно взять и со стабилизатора усилителя мощности. Чтобы электролитические конденсаторы поменьше вносили своих искажений, они зашунтированы неэлектролитическими - типа К73-17.

Немного подробнее рассмотрим особенности изготовления главного узла в этой схеме - фазорасщепительного (фазоинверсного) трансформатора. От аккуратности его изготовления зависит как индуктивность рассеяния, так и диапазон эффективно воспроизводимых частот, не говоря уже об уровне различных искажений. Так вот, два основных секрета технологического процесса изготовления этого трансформатора таковы. Первое - необходимость отказаться от простой намотки обмоток. Суть метода такой намотки заключается в следующем. Каждая из обмоток состоит из нескольких обмоток, содержащих строго одинаковое количество витков. Необходимо избегать какой бы то ни было ошибки в количестве витков, т.е. разницы в витках между обмотками. Поэтому решено было производить намотку трансформатора давно проверенным способом: используется шесть проводов (например, ПЭЛШО-0,25). Заранее рассчитывают необходимую длину обмоточного провода (не всегда же и не у каждого радиолюбителя окажется под рукой шесть бухт провода одного диаметра), складывают шесть проводов вместе и производят намотку всех обмоток одновременно. Далее необходимо лишь найти отводы нужных обмоток и соединить их попарно-последовательно. И еще, мотать необходимо так, чтобы провода одного витка не расходились в разные стороны далеко-широко один от другого, а держались общего рулона вместе. Мотать же отдельными проводами недопустимо, трансформатор будет буквально "звенеть" во всем диапазоне звуковых частот, индуктивность рассеяния увеличится, возрастут и искажения усилителя мощности из-за асимметрии сигналов на выходах трансформатора.
Да и ошибиться очень легко можно при отдельных способах намотки симметричных обмоток. А ошибка в несколько витков дает о себе знать несимметричностью противофазных сигналов. Еще раз хочется сказать о том, что не трансформаторы виноваты в плохой работе некоторых схем, а их конструкторы . Во всем мире весьма расширилось производство ламповых усилителей мощности, их подавляющее большинство содержит разделительные трансформаторы (вернее, согласующие), без которых ламповый каскад (типовая схема двухтактного выходного каскада содержит 2-4 лампы) просто невозможно согласовать с низкоомными акустическими системами. Есть, конечно же, и экземпляры "суперламповых" усилителей мощности, где нет выходных трансформаторов. Их место заняли либо мощные комплементарные пары полевых транзисторов или ... батарея мощных ламповых триодов, соединенных параллельно.
В нашем случае все гораздо проще. Транзистор VT1 фазоинвертора МОП-типа, включенный по схеме с общим стоком (истоковый повторитель) работает на генератор тока (источник тока), выполненный на транзисторе VT2. Применять мощные полевые транзисторы типа КП904 не следует, у них повышенные входные и проходные емкости, что не может не сказаться на работе этого каскада.

Еще один камень преткновения, серьезная проблема в создании широкополосного трансформатора ожидает конструктора при выборе магнитопровода. Если ваш усилитель мощности будет работать на частотах выше 1 кГц, то можно смело использовать ферритовые сердечники. Но отдавать предпочтение следует экземплярам магнитопроводов с наибольшей магнитной проницаемостью, очень хорошо работают сердечники от строчных трансформаторов телевизоров.
Если же усилитель мощности используют в качестве басового варианта, то смело можно применять традиционные Ш-образные пластинчатые варианты магнитопроводов. Необходимо подчеркнуть, что экранировка всех таких трансформаторов почти везде была необходимостью и потребностью.
На НЧ хорошо работают и тороидальные сердечники. Кстати, их использование упрощает уничтожение всевозможных наводок со стороны сетевых трансформаторов. Здесь сохраняется "обратимость" преимущества тороидального сердечника - в сетевом варианте он отличается малым внешним полем излучения, во входных же (сигнальных) цепях - он малочувствителен к внешним полям. Что же касается широкополосного варианта (20 - 20 000 Гц), то наиболее правильным будет применение двух разных видов сердечников, размещенных рядом, в одном окне каркаса для намотки обмоток трансформатора. При этом устраняется завал как на высоких частотах (здесь работает ферритовый сердечник), так и на низких частотах (здесь работает трансформаторная сталь). Дополнительного улучшения звуковоспроизведения в области 1-15 кГц добиваются покрытием пластин стального сердечника лаком, как это делают в ламповых усилителях мощности. При этом каждая пластина "работает индивидуально" в составе сердечника, чем и достигается уменьшение всевозможных потерь на вихревые токи. Нитролак высыхает быстро, тонким слоем его наносят простым окунанием пластины в посуду с лаком.

Многим может показаться слишком кропотливой такая технология изготовления трансформатора в фазоинверторе, но поверьте на слово - "игра стоит свеч", ибо "что посеешь, то и пожнешь". А насчет сложности, "нетехнологичности" можно сказать следующее - за один выходной день удавалось без спешки изготовить два таких трансформатора, да и распаять их обмотки в необходимом порядке, что не скажешь о выходных трансформаторах для ламповых усилителей мощности.

Теперь несколько слов о количестве витков. Теория требует увеличения индуктивности первичной обмотки (I), с ее увеличением расширяется диапазон воспроизводимых частот в сторону более низких частот. Во всех конструкциях вполне достаточной была намотка обмоток до заполнения каркаса, диаметр провода применялся 0,1 - для 15 жил, 0,15 - для 9 жил и 0,2 для 6-жильного варианта. В последнем случае использовался и имеющийся ПЭЛШО 0,25.

Для тех же, кто не переносит трансформаторы, есть и бестрансформаторный вариант:

усилитель мощности

Фазоинверторный каскад (бестрансформаторный вариант)

Это простейший, но вполне звучащий вариант схемы фазоинверторного каскада, который использовался не только в симметричных схемах усилителей мощности, но и в мощных мостовых усилителях мощности. Простота зачастую обманчива, поэтому ограничу себя в критике подобных схем, но осмелюсь сказать, что площади синусоид отсимметрировать довольно сложно. Несмотря на вносимые трансформаторами фазовые, амплитудно-частотные искажения, они позволяют достигнуть практически линейной АЧХ в области звуковых частот, т.е. во всем диапазоне 20 Гц - 20 000 Гц. От 16 кГц и выше могут сказаться емкости обмоток, но частично уйти в сторону от этой проблемы позволяет дополнительно увеличенная площадь сечения магнитопровода. Правило простое, подобное сетевым трансформаторам: увеличив площадь сечения магнитопровода сердечника трансформатора, например, в два раза. смело уменьшают количество витков обмоток в два раза и т.д.

Расширить область эффективно воспроизводимых частот вниз, т.е. ниже 20 Гц, можно следующим способом. Полевые транзисторы VT1, VT2 (первый вариант фазонвертора) применяют с большими значениями I с.нач. и увеличивают емкость конденсатора C4 до 4700 мкф. Электролитические конденсаторы работают значительно чище, если к ним приложено прямое поляризующее напряжение в несколько вольт. Очень удобно в этом случае поступать следующим образом. Устанавливают в верхний (по схеме) транзистор VT1 экземпляр с начальным током стока большим, нежели у транзистора VT2. Данная схема усилителя-фазоинвертора успешно использовалась с различными усилителями мощности, в том числе и с ламповыми симметричными.

Когда фазоинвертор уже изготовлен и настроен, можно приступать и к непосредственно к усилителю мощности. Широко распространенные разъемы (гнезда) СШ-3, СШ-5 и им подобные вообще использовать нельзя, как это делают многие конструкторы и делали заводы-изготовители. Контактное сопротивление такого соединения значительно (0,01 - 0,1 Ом!) и еще колеблется в зависимости от протекающего тока (с увеличением тока сопротивление растет!). Поэтому следует применять мощные разъемы (например, от старой военной радиоаппаратуры) с малым сопротивлением контактов. То же касается и контактов реле в блоке защиты АС от возможного появления на выходе усилителя мощности постоянного напряжения. И не надо их охватывать (контактные группы) какими-либо обратными связями для уменьшения искажений. Поверьте на слово, что на слух (субъективная экспертиза) их практически не слышно (при достаточно малых сопротивлениях контактов), чего не скажешь об "электронных" искажениях, вносимых всеми усилительными каскадами, конденсаторами и другими компонентами усилителя мощности, которые непременно вносят яркие краски в общую картину звуковоспроизведения. Свести к минимуму всевозможные искажения можно рациональным использованием усилительных каскадов (особенно это касается усилителей напряжения - чем их меньше, тем лучше качество усиленного сигнала). В данном усилителе мощности всего один каскад усиления напряжения - это транзистор VT3 (левое плечо) и VT4 (правое плечо). Каскад на транзисторах VT6 и VT5 всего лишь согласующие (токовые) эмиттерные повторители. Транзисторы VT3 и VT4 отбирают с h21 э более 50, VT6 и VT5 - более 150. В этом случае никаких проблем при работе усилителя мощности на больших мощностях возникать не будет. Напряжение отрицательной обратной связи по постоянному и переменному току поступает на базы транзисторов VT6 и VT5 через резисторы R24 и R23. Глубина этой ОС всего около 20 дБ, поэтому динамические искажения в УМЗЧ отсутствуют, но такой ОС вполне достаточно для поддержания режимов выходных транзисторов VT7 и VT8 в необходимых пределах. Усилитель мощности достаточно устойчив к ВЧ самовозбуждению. Простота схемы позволяет его быстро размонтировать, поскольку допускается независимое отключение питания (-40 В) драйвера и оконечных транзисторов (2 x 38 В). Полная симметрия усилителя способствует снижению нелинейных искажений и снижению чувствительности к пульсациям питающего напряжения, а также дополнительному подавлению синфазных помех, поступающих на оба входа усилителя мощности. Недостаток усилителя состоит в значительной зависимости нелинейных искажений от h21 э примененных транзисторов, но если транзисторы будут иметь h21 вых = 70 Вт) равно 1,7 В (эффективное значение).

На транзисторах VT1 и VT2 выполнен источник (генератор тока), питающий дифференциальный каскад (драйвер). Величину этого тока 20...25 мА устанавливают подстроечным резистором R3 (470 Ом). Поскольку от этого тока зависит и ток покоя, то и для термостабилизации последнего транзистор VT1 размещен на теплоотводе одного из транзисторов выходного каскада (VT7 или VT8). Увеличение температуры теплоотвода выходного транзистора соответственно передается размещенному на этом теплоотводе транзистору VT1, при нагревании же последнего происходит снижение отрицательного потенциала на базе транзистора VT2. Это призакрывает транзистор VT2, ток через него уменьшается, что соответствует уменьшению тока покоя выходных транзисторов VT7 и VT8. Таким образом и осуществляется стабилизация тока покоя выходных транзисторов при значительном нагревании их теплоотводов. Несмотря на кажущуюся простоту реализации такой термостабилизации, она достаточно эффективна и никаких проблем в надежности усилителя мощности не было. Очень удобно контролировать токи дифференциальных транзисторов (VT3 и VT4) по падению напряжения на резисторах R7 и R15 или R21 и R26. Подстроечный резистор R11 - балансировочный, служит для установки нулевого потенциала на громкоговорителе (на выходе усилителя мощности).

Драйверы обоих каналов усилителя мощности можно запитать от одного общего стабилизатора напряжения. При этом оба канала усилителя мощности объединяют в один корпус, а блоки питания собраны в другом корпусе. Естественно, здесь широкое поле выбора для каждого конкретного случая, кому что более подходит в конструктивном исполнении.
При блочной конструкции придется полностью разделять питания обоих УМЗЧ, в том числе и драйверов. Но в любом случае для питания драйвера необходим отдельный выпрямитель со своей обмоткой в трансформаторе. В каждом канале усилителя мощности используется свой трансформатор питания. Такой вариант конструктивного исполнения имеет несколько преимуществ по сравнению с традиционным использованием одного трансформатора. Первое, что удается, так это уменьшить высоту блока в целом, поскольку размеры (высота) сетевого трансформатора значительно снижается при раздетых питающих трансформаторах для каждого усилителя мощности. Далее, легче производить намотку, поскольку диаметр намоточных проводов без ущерба для мощности усилителя мощности можно снижать в 1,4 раза. В связи с этим и сетевые обмотки можно включать противофазно для уменьшения сетевых наводок (это очень помогает компенсировать излучение полей трансформаторов, особенно при размещении в одном корпусе с усилителями мощности других схем усилителей - блоков тембров, регулировки громкости и т.п.). Разделение питающих цепей выходных транзисторов усилителя мощности позволяет увеличить и качество воспроизводимого сигнала, особенно на низких частотах (переходные искажения в каналах на НЧ также снижаются). Для снижения уровня интермодуляционных искажений, вызываемых сетевым питанием, в трансформаторы введены электростатические экраны (один слой провода, намотанного виток к витку).

Во всех вариантах конструкций усилителей мощности использованы тороидальные магнитопроводы для трансформаторов. Намотка производилась вручную с помощью челноков. Можно порекомендовать и упрощенный вариант конструкции блока питания. Для этого используют фабричный ЛАТР (хорошо подходит девятиамперный экземпляр). Первичная обмотка как самая трудная в процессе намотки - уже готовая, необходимо лишь намотать экранную обмотку и все вторичные и трансформатор прекрасно будет работать. Окно у него достаточно просторное для размещения обмоток для обоих каналов усилителя мощности. Кроме того, при этом можно драйверы и усилителифазоинверторы запитать от общих стабилизаторов, "сэкономив" в этом случае две обмотки. Недостаток такого трансформатора - большая высота (кроме, конечно же, и вышеперечисленных обстоятельств).

Теперь о деталях. Устанавливать низкочастотные диоды (вроде Д242 и им подобных) для питания усилителя мощности не следует - увеличатся искажения на высоких частотах (от 10 кГц и выше), кроме того в схемы выпрямителей были дополнительно внесены керамические конденсаторы, позволяющие снизить интермодуляционные искажения, вызываемые изменением проводимости диодов в момент их коммутации. Таким образом снижается влияние сетевого питания на усилитель мощности при его работе на высоких частотах звукового диапазона. Еще лучше обстоит дело с качеством при шунтировании электролитических конденсаторов в сильноточных выпрямителях (выходные каскады усилителя мощности) неэлектролитическими. При этом на слух и первое и второе дополнение схем выпрямителей достаточно отчетливо воспринималось субъективной экспертизой - проверкой на слух работы усилителя мощности, отмечалась более естественная его работа при воспроизведении нескольких ВЧ-составляющих разных частот.
О транзисторах усилителя мощности. Заменять транзисторы VT3 и VT4 худшими по частотным свойствам экземплярами (КТ814, например) не стоит, коэффициент гармоник возрастает при этом не менее, чем в два раза (на ВЧ-участке и того более). На слух это очень хорошо заметно, средние частоты воспроизводятся неестественно. С целью упрощения конструкции усилителя мощности в выходном каскаде использованы составные транзисторы серии КТ827А. И хотя они, в принципе, достаточно надежны, их все же необходимо проверять на максимально выдерживаемое (у каждого экземпляра оно свое) напряжение коллектор-эмиттер (имеется в виду прямое напряжение U кэ max. для закрытого транзистора). Для этого базу транзистора соединяют с эмиттером через резистор 100 Ом и подают, плавно увеличивая, напряжение: на коллектор - плюс, на эмиттер - минус. Экземпляры, обнаруживающие протекание тока (предел амперметра - 100 мкА) для U кэ = 100 В не пригодны для данной конструкции. Они могут работать, но это не надолго. Экземпляры же без таких "утечек" работают надежно годами, не создавая никаких проблем.
Резисторы применены типов С2-13 (0,25 Вт), МЛТ. Конденсаторы типов К73-17, К50-35 и др. Налаживание правильно (без ошибок) собранного усилителя мощности заключается в установке тока покоя транзисторов выходного каскада усилителя мощности - VT7 и VT8 в пределах 40-70 мА. Очень удобно контролировать значение тока покоя по падению напряжения на резисторах R27 и R29. Ток покоя задают резистором R3. Близкое к нулевому постоянное выходное напряжение на выходе усилителя мощности устанавливают балансировочным резистором R11 (добиваются разности потенциалов не более 100 мВ).

По материалам статьи А. Зызюка

Смотри также:
Вокальные радиомикрофоны и эстрадные беспроводные радиосистемы
Микшеры и активные микшерские пульты
Аренда и прокат светового и звукового оборудования в Петербурге: комплекты звукоусилительной аппаратуры, свет и звук для вечеринок, концертов, дискотек, корпоративов, свадеб
Концертные звуковые комплекты для клубов дискотек школ студий

© 2005-2023 Adada.ru
 
консультант по оборудованию
в Санкт-Петербурге :
+7 911 922 62 67
с 10.30 до 19.30 по мск